EGGN 512 Computer Vision Spring 2013

Homework 3 - SOLUTIONS
Due Monday, February 18, 2013 (by 8:00 pm)

Notes: Please email me your solutions for these problems (in order) as a single Word or PDF document. If you do
a problem on paper by hand, please scan it in and paste it into the document (although | would prefer it typed!).

1. (15 pts) On the course website are two images of a street intersection taken from a
stationary camera, taken 5 seconds apart. Transform these images to “orthophotos™;
i.e., images taken from a viewpoint directly overhead, such that the scale is uniform.
Here are some control points that have been measured in the scene:

Image (x,y) | Actual (x,y) in feet
154, 389 0,0

453, 287 535, -1

263, 214 60.5, -54.5

20, 252 5, -56

253, 464 0,17.7

316, 436 8,17.7

227,312 19.9, -14.6

Choose a scale of one pixel = 0.25 feet in the output image. How fast (miles per
hour) is the person in the lower left walking (it’s ok to measure the location of the
person in the orthophotos by hand)?

Solution: The two images:

The Matlab code:

% HW3 pl
clear all
close all

EGGN 512 Computer Vision

Spring 2013

11 = imread("image0037.jpg~);
imshow(11, [D;

% Image points (X,Yy)
pl = [
154 389; % Origin
453 287; % Stop
263 214; % Stop
20 252; % Lamp
253 464; % Sidewalk 1
316 436; % Sidewalk 2
227 312]; % White mark

% Draw marks
for i=1l:size(pl,l)

x = p1l(i,1); y = pl(1,2);

rectangle("Position”, [x-4 y-4 8 8], "EdgeColor”, "r");

end

% Corresponding world coordinates (Xx,y in feet)
P2 = [

0 0;

53.5 -1;

60.5 -54.5;

5 -56;

0 17.7;

8 17.7;

19.9 -14.6];
% Scale so that one pixel = S feet
S = 0.25;
p2 = p2/S;

T = cp2tform(pl,p2, "projective”);

Ilortho = imtransform(ll, T, "XData®", [-10 70]/S, "YData“",

figure, imshow(llortho, []);
impixelinfo
% Position of person®s feet = (43, 327) measured by hand

12 = imread("image0187._jpg”);
figure, imshow(12, [1);

12ortho = imtransform(12, T, "XData®", [-10 70]/S, "YData“",

figure, imshow(l2ortho, []);
impixelinfo
% Position of person®s feet = (50, 230) measured by hand

d = S*sqrt((50-43)"2 + (327-230)"2);

[-70 301/S);

[-70 30]/9):

fprintf("Person traveled %f feet in 5 seconds, or %f mph\n-©,

d, (d/5)*0.68);

The orthophotos:

EGGN 512 Computer Vision Spring 2013

Pixel info: (24, 152) 140 Pixel info: (20, 151} 136

Person traveled 24.313062 feet in 5 seconds, or 3.306576 mph

2. (15 pts) The auto-correlation score is E . (Au) = > w(x;)[VI,(x;)-Au]* (equation 4.5 in

the textbook). Show that this equals Au™ AAu, where matrix A is as given in equation
4.8.

Solution:

Enc (Au) = ZW(Xi)[VIO(Xi)) AU]Z

~ [aly(x) . aly(x) T
_Zw(xi)_Ax 6X + Ay Py }

_ (A, A1, (%,) Y A1) Al x))
_Zw(xi)_Ax(™)Ax+2Ax(j(jAy+Ay(o jAy]

OX oy
- AX|:Z W(Xi)(aliT(Xi)j }Ax - ZA{Z W(X;)(al Oa(XX‘) j(al Oa(yxi) HAy + Ay{z w(X,)(aliT(X')J } Ay

= Ax(w 1L)Ax+2ax (w1)Ay + Ay (w1)ay

wxl, o wxl) AX
=(Ax Ay
wxl, o wxl LAy

EGGN 512 Computer Vision Spring 2013

3. (20 pts) Take the Matlab corner detector program developed in class and make the
following changes:
a. Instead of using a square region of size NxN to sum the gradient products,
weight the values, using a Gaussian mask for w(x,y).
b. Instead of using the interest point measure det(A)/trace(A), use the minimum
eigenvalue of A. This is the “Shi-Tomasi” approach.
c. Instead of taking all interest points above a minimum threshold, take the 10
points with the highest scores.
Apply this program to find the top 10 corner points in the image “test000.jpg”. Draw a
rectangle around each of these points on the original image and label them.

Solution:
The change for part (a) is straightforward ... just use a Gaussian for w. The sigma for the
Gaussian is up to you to pick. Our author states that sigma = 2.0 gives good results.

For part (b), we know that the eigenvalues of a 2x2 symmetric matrix are
(a+c)t+/(a—c) +4b?
2

The smaller eigenvalue will be the one with the negative sign. You can compute the smallest
eigenvalue at each point in the image using the Matlab command

v2 = ((A11+A22)-sqrt((Al1-A22) .72 + 4*A12.72))/2;

For part (c), the Matlab “sort” function is handy. But you not only want to return the sorted

values, you want to know the indices of the sorted points. You can do this using
[vals, indices] = sort(vals, “descend®);

The Matlab code, and the resulting image:

clear all
close all

1 = double(imread("test000.jpg-));

% Apply Gaussian blur

sd = 1.0;

I = imfFilter(1l, fspecial("gaussian®, round(6*sd), sd));
imshow(l, [D;

% Compute the gradient components
Gx = imFilter(l, [-1 1]);

! Do not use “for” loops to go through the image and call Matlab’s “eig” function at every point. Instead, use the
equation for the eigenvalue that you calculated in HW1, problem 3. You should be able to do this without any “for”
loops.

EGGN 512 Computer Vision Spring 2013

Gy = imfilter(1, [-1; 11);

% Compute the products of the gradients at each pixel

Gxx = Gx .* GX;
Gxy = Gx .* Gy;
Gyy = Gy .* Gy;

% Size of neighborhood over which to compute corner features.
N = 13;

%w = ones(N); % The neighborhood
si = 2.0; % Sigma for integration step
w = Fspecial(“gaussian®, N, si); % The neighborhood

% Sum the G"s over the window size.

% Note: these convolutions can be expensive for large window sizes.
% If time is critical, you can always do two 1D convolutions (row

% first, then column) since the mask is separable. For really

% large windows, do the convolution in the Fourier domain.

A1l = imFilter(Gxx, w);

Al2 = imFilter(Gxy, w);

A22 = imFilter(Gyy, w);

% At each pixel (X,y), we have the 2x2 matrix
% [ALL(X,y) Al2(X,Y);

% A21(x,y) A22(x,y)]

% OF course, A21 = Al2.

% Find the eigenvalues of A. These satisfy the equation Ax = vx, where v
% is an eigenvalue and x is the corresponding 2x1 eigenvector.

% We can solve by taking (A - vl)x = 0, and so we find v such that

% det(A - vl) = 0.

% The two eigenvalues (actually all we need is the v2 value)
% vl = ((AL11+A22)+sqrt((Al1-A22) "2 + 4*A12.72))/2;

v2 = ((A11+A22)-sqrt((Al1l-A22) .72 + 4*A12.7"2))/2;

S = Vv2;

% Choose a suppression radius, for non-maxima suppression
r = N;

% Find local maxima within each neighborhood of radius 2r
Lmax = (s==imdilate(s, strel("disk",2*r)));

% Note - we don"t want to detect points too close to the border, so just
% zero out everything near the border.

Lmax(1:N,:) = false;

Lmax(:,1:N) = false;

Lmax(end-N:end, :) = false;

Lmax(:,end-Nzend) = false;

% Get a list of the indices of all the potential interest points
[rows cols] = find(Lmax);

EGGN 512 Computer Vision Spring 2013

% Get the values of those interest points
vals = s(Lmax);

% Sort in descending order. ™vals"™ are the sorted values; ™"indices"™ are
% the corresponding indices of those values.
[vals, indices] = sort(vals, “descend®);

% Draw a box around the interest points, of size NxN
for 1=1:10

cols(indices(i));

rows(indices(i));

X
y

rectangle("Position®, [x-N/2 y-N/2 N N],

"EdgeColor®, "r-,

"Linewidth®, 1.5); % default is 0.5
text(x+5,y-5, sprintf("%d", i), -

*Color®, "r=, ... % label with 1d number

"FontSize®, 14); % default is 10

end

4. (15 pts) Run the OpenCV version of the Shi-Tomasi corner detector, which is
implemented in the function “goodFeaturesToTrack”. The use of the Shi-Tomasi
corner detector is illustrated in a tutorial on the http://docs.opencv.org/ website.

a. Apply the program to the image “test000.jpg” and find the top 10 corners (note -
you may not get exactly the same corners as your Matlab program finds in the
previous problem). Give the code you used and the resulting image.

b. Apply the program to the image “cubel.jpg”. See if you can find all the corners
on the checkerboard pattern (you will have change the program to increase the
maximum allowable number corners to find).

EGGN 512 Computer Vision Spring 2013

Solution:
(@) I just ran the tutorial from the website, except that | used the image “test000.jpg”. Here is the
result:

[®-] Image b‘@u

Max c.s: 10 — |

.

And the code:
/**
* @function goodFeaturesToTrack_Demo.cpp
* @brief Demo code for detecting corners using Shi-Tomasi method
* @author OpenCV team
*/

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;

int maxCorners = 23;
int maxTrackbar = 100;

RNG rng(12345);
const char* source_window = "Image";

/// Function header
void goodFeaturesToTrack_Demo(int, void*);

/**
* @function main
*/
int main(int, char** argv)

{

/// Load source image and convert it to gray

7

EGGN 512 Computer Vision

Spring 2013

src = imread("C:/Users/whoff/Documents/Teaching/Eggn512/hw/hw3/testee0.jpg", 1);

cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create Window
namedWindow(source_window, CV_WINDOW_AUTOSIZE);

/// Create Trackbar to set the number of corners

createTrackbar("Max corners:", source_window, &maxCorners, maxTrackbar,

goodFeaturesToTrack_Demo);

}

imshow(source_window, src);
goodFeaturesToTrack_Demo(0, 0);

waitKey(0);
return(0);

/**

* @function goodFeaturesToTrack_Demo.cpp
* @brief Apply Shi-Tomasi corner detector
*/

void goodFeaturesToTrack_Demo(int, void*)

{

if(maxCorners < 1) { maxCorners = 1; }

/// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;

double qualitylLevel = 0.01;

double minDistance = 10;

int blockSize = 3;

bool useHarrisDetector = false;

double k = 0.04;

/// Copy the source image
Mat copy;
copy = src.clone();

/// Apply corner detection

goodFeaturesToTrack(src_gray,
corners,
maxCorners,
qualitylevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,

ks

/// Draw corners detected

cout<<"** Number of corners detected: "<<corners.size()<<endl;
int r = 4;

for(size_ t i = @; 1 < corners.size(); i++)

{ circle(copy, corners[i], r, Scalar(rng.uniform(®,255), rng.uniform(@,255),
rng.uniform(@,255)), -1, 8, 0); }

EGGN 512 Computer Vision Spring 2013

/// Show what you got
namedWindow(source_window, CV_WINDOW_AUTOSIZE),
imshow(source_window, copy);

}

(b) For the cubel.jpg image, | changed the “maxTrackbar” parameter to allow up to 200 corners.
Here is the result:

w

-1(0(-1
0 (4|0
-1(0(-1

EGGN 512 Computer Vision Spring 2013

a. Compute (by hand) the normalized cross correlation score of template w with
image f, at the center position of f. You might want to check your answer using
Matlab’s normxcorr2 function.

f

1/0/1(0]1
112]1(1]1
02600
1/1(3(2]1
1/0(1/0|1

b. Give a different image f such that the normalized cross correlation score of
template w with image f, at the center position of f, yields a score of -1. Assume
that the image is the type unsigned 8-bit integer (ie, its values lie between 0 and
255).

Solution:
(a) The normalized cross correlation score of a template w with image f is

Z[W(s,t)—v_v][f (x+5,y+t)— f]

st

> [w(s,t)-w]’ Z[f (X+s,y+t)— f_]z}

st

c(x,y)= {

The mean of w is zero. The sum of the squared values of w is > _[w(s,t) - W]’ =20.

st
We only need to look at the center 3x3 portion of f. The mean of the 3x3 region of f at the center
location is 2.0. Subtracting off the mean from that 3x3 region of f results in

0-1/-1
0]4)-2
-111(0

The sum of the squared values Z[f (X+5,y+t)— f]z =24.
s,t
The numerator is Z[w(s,t)—v_v][f (x+s,y+t)— f|]=1+16+1=18,
st

So c at the center point is (18)/sqrt(20x24)=0.8216. This matches what normxcorr2 produces.

10

EGGN 512 Computer Vision Spring 2013

(b) An image that is identical to the template, but has opposite signs for each value, will yield
a cross correlation score of -1.0. However, since we are restricted to the values that can
be represented in unsigned 8-bit integers, we can’t use negative numbers. But the cross-
correlation operator subtracts off the mean anyway, so we can add a constant to the image
to make sure the values are non-negative. So, if | add 4 to the negative of w, | get

Doing a normalized cross correlation of w with this image results in a score of -1.0 at the
center. The other values of f don’t matter since they are outside the boundaries of the
template.

6. (20 pts) Using normalized cross correlation, match the top 10 points from the corner
detector program of problem 3, from image “test000.jpg’ to their best matches in
image “test012.jpg”. You can use Matlab’s “normxcorr2” function. Mark the best
matches in the second image, and label them with their identifying index from the first
image (i.e., “1”, “2”, etc).

Solution:
We append the following code to the program from problem #3.

%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%%%%6%%% %6%%% %%% % %6%% % %6%%% %% %% %% %% %%
% Now match these points to another image
12 = double(imread("test012_jpg~));

% Apply Gaussian blur
12 = imfilter(12, fspecial(“gaussian®, round(6*sd), sd));

figure, imshow(12, [1);

% For each corner point found above, we will extract a template subimage of
% size NxXN centered on that point, and try to match it to the second iImage.
for i=1:10

x = cols(indices(i)); % Location of corner point in image 1

11

EGGN 512 Computer Vision Spring 2013

%
%
%
cm

= rows(indices(i));

Get the template from the First image, surrounding this point
floor(N/2);
1(y-M:y+M, Xx-M:x+M);

normxcorr2(T,12); % Do normalized cross correlation

The scores image C is bigger than I, by M rows and M columns along
the sides and the top and bottom. So when we find the location of
the peak score, we should subtract M from the indices.

ax = max(C(:));

[y2 x2] = find(C==cmax);

y2
X2

fp

re

te

end

y2-M;
X2-M;

rintf("Point %d matches with score=%f\n", i, cmax);

ctangle("Position®, [x2-N/2 y2-N/2 N N], ---

"EdgeColor®, "r=*, ...

"Linewidth", 1.5); % default is 0.5
xt(x2,y2, sprintf("%d", 1), ...

"Color®, "r*, ... % label with 1d number

"FontSize", 14); % default is 10

The output is:

Point
Point
Point
Point
Point
Point
Point
Point
Point
Point

1 matches with score=0.998280
2 matches with score=0.935472
3 matches with score=0.980418
4 matches with score=0.964987
5 matches with score=0.966965
6 matches with score=0.913057
7 matches with score=0.983590
8 matches with score=0.906289
9 matches with score=0.995221
10 matches with score=0.982813

12

EGGN 512 Computer Vision Spring 2013

Looking at the results, these points matched correctly: 1,3,4,5,6,7,9,10. These were wrong: 2,8.

It is interesting to display the corresponding patches next to each other. In the figure below, the
top row are the interest point patches from image one, and the bottom row are the corresponding
patches extracted from image two.

- * UMM ol ¥ &N T = 01

< "M o O N ™" = 01

13

EGGN 512 Computer Vision Spring 2013

%6%9%6%6%%%6%6%%%%6%%%%%%%
% Just out of curiosity, display the corresponding interest point patches.

%

Top row will be from image one, bottom row from image two.

figure;

for

end

i=1:10
x = cols(indices(i)); % Location of corner point in image 1
y = rows(indices(i));

% Get the template from the first image, surrounding this point
M = Ffloor(N/2);

T = 1(y-M:y+M, xX-M:ix+M);

subplot(2,10,1), imshow(T,[1);

C = normxcorr2(T,12); % Do normalized cross correlation

% The scores image C is bigger than I, by M rows and M columns along
% the sides and the top and bottom. So when we find the location of
% the peak score, we should subtract M from the indices.

cmax = max(C(:));

[y2 x2] = find(C==cmax);
y2 = y2-M;
X2 X2-M;

subplot(2,10,i1+10), imshow(12(y2-M:y2+M, x2-M:x2+M), [1):

14

